简单谈谈最近在看的几本书「数据中台,用户画像」

本文已收录github:https://github.com/BigDataScholar/TheKingOfBigData,里面有大数据高频考点,Java一线大厂面试题资源,上百本免费电子书籍,作者亲绘大数据生态圈思维导图…持续更新,欢迎star!

前言

        作为一个喜欢看书的“少年”,每次一到大型电商促销活动,总不会忘记去收藏夹看看,有哪些好书有打折优惠。往往这个时候,我总能收割一波价格实惠,质量又高的好书。但是,书可不是装饰品,买来还是需要静下心来去阅读的,所以我一般都会在平时下班回家或者周末抽出一部分时间去看书,毕竟“书籍是程序员进步的阶梯”~本期文章,我就来分享一下,最近在看的几本书,并附带一些自己的感想,希望对你们有所帮助!

在这里插入图片描述


海量数据处理与大数据技术实战

        

在这里插入图片描述
        第一本就是冰河大佬于今年9月首次出版的《海量数据处理与大数据技术实战》。相信部分小伙伴对这本书可能不会感到陌生,一方面是因为我之前在写其他技术文章的时候,有时候会引用了一些书中的内容,并在文章中多次为大家谈到这本书。这本书我个人感觉非常适合想转行从事或者系统学习大数据的技术开发人员。书中对于技术的讲解正如冰河本人那样严谨,总的来说,是大数据领域中不可多得的一本好书!下面让我来简单介绍一下这本书的内容。

        本书一共分为4大篇,第一篇是「大数据基础篇」,主要介绍了大数据处理概论,离线批处理技术Hadoop和在线实时处理技术Storm;第二篇是「大数据离线批处理技术篇」,介绍了如何安装配置Hadoop集群,并系统地介绍了HDFSMapReduceSqoop;第三篇是「大数据在线实时处理技术篇」,介绍了海量数据采集利器Flume,海量数据传输利器KafkaStorm基础知识和集群环境搭建教程,并佐以Storm的实战案例和监控Storm的教程;第四篇是「大数据处理实战案例篇」,介绍了一个基于海量日志数据的分析统计系统,详细介绍了系统架构设计,搭建系统环境的过程,并有具体离线批处理计算子系统的实现和在线实时计算子系统的实现,其中涉及到的技术有FlumeKafkaStormZookeeperActiveMQRedisMySQL,其中在线实时计算子系统主要由Java语言开发。

        读后感:

        作者在书中前言有谈到,尽管对技术有着很高的追求,但是由于大数据领域中的各种技术和框架涉及的知识点众多,因此一本书籍很难涵盖所有的知识点和功能点。但是我在阅读过一遍过后,仍然不得不感慨这本书写的是真不错,基本上一个大数据小白认真阅读,并能跟着书中的案例实操一遍自带的项目,多少都能入个门了。但是想要在大数据领域有更深的造诣,例如使用近几年很火的Flink代替Storm去做实时流数据处理,在实时数据分析领域基于列存储的数据库ClickHouse … 只能靠自己沉下心去自学。毕竟技术迭代更新这么快,只有主动去学习,去适应,才不会被这个技术社区所淘汰!

用户画像方法论与工程化解决方案

        
在这里插入图片描述
        第二本《用户画像方法论与工程化解决方案》我在之前介绍大数据必读书单的文章中也有谈到,这是一本相当经典的书籍。在众多数据分析方法中,用户画像几乎是后期数据的“标配”,适用于应用层的个性化推荐精准营销客群管理运营等各个场景。引用《Python数据分析与数据化运营》作者宋天龙先生对此书的评价,这本书涵盖画像基础指标体系搭建数据存储数据开发性能调优流程调度产品化案例实践应用等内容,完整,详实且落地性强,假以时日,会成为用户画像领域的经典书籍

        本书围绕用户画像主题进行了深度剖析,从实战角度结合多业务场景对用户画像相关技术进行详细讲解。全书共分为9个章节。第 1 - 6 章主要讲解了搭建用户画像系统需要掌握的概念技术流程方法论等,包括用户画像的基础知识数据指标体系标签数据存储标签数据开发开发性能调优作业流程调度等;第7章讲解了如何对用户画像进行产品化,为工程实践提供解决方案;第8章详细讲解了用户画像在经营分析精准营销个性化推荐3个经典领域的应用;第9章通过8个常见的场景讲解了8个用户画像系统的落地案例,帮助读者掌握如何利用用户画像系统来驱动企业的营收增长

        读后感:

        在看这本书之前,我是有开发画像项目的经验的,所以对于书中所提到的一些概念还是比较熟悉的。这本书可以说,是真的从技术,产品,运营三个维度详尽阐述从0到1搭建用户画像系统的技术栈和方法论。我在之前的文章介绍过标签数据开发,包括统计类,规则类,挖掘类标签。这本书也都有很详细的介绍。对于标签数据的存储和开发性能的调优则更是在我的原有认知基础上,又打开了一扇新的大门。而关于如何将用户画像产品化和其具体的应用,书中的介绍也比我想象的要丰富得多。总的来说,不管是做分层策略的运营人员,追求用户体验的产品经理,寻求解决方案的数据分析师,搭建底层特征的算法工程师,亦或者所有的大数据爱好者来说,这都是一本不可多得的案头工具书

数据中台架构:企业数据化最佳实践

        
在这里插入图片描述
        第三本我介绍的是《数据中台架构:企业数据化最佳实践》。说实话,我在之前是从来没了解过什么是数据中台,也不清楚这本书的存在。知晓这本书还是在朋友圈一位阿里云的学长多次写文章推荐的情况下才开始了解到的。这本书是国内知名的数据中台产品及解决方案服务商袋鼠云高级副总裁领衔编写,基于十几个行业头部企业的数据中台项目落地经验提炼出数据中台建设五步法。引用北京大学软件学院教授,北京大数据研究院保险大数据研究中心主任赵占波博士对此书的评价:本书从数据中台的战略转型,架构理念,技术平台,实施路径等角度,提供了技术经验和案例经验,具有科学性,系统性,可行性和实操性。对于处于转型初期以及亟待转型的企业,技术研究人员,行业实施人员,本书都有很强的借鉴价值

        这本书一共分为9节内容。第一节「信息认知和当前的信息化革命」,重点介绍了信息的发展如何推动人类历史进步与当前的信息化革命所出现新的工具和特征。第二节「企业数据化」,重点介绍企业数据化的概念和企业数据化与企业信息化及企业的关系,并提出了企业数据化建设的内容以及当前所处的现状和问题。第三节「数据中台概述」,开始介绍什么是数据中台和数据中台的价值与建设的必要性,还提出了非常硬核的数据中台建设五步法。第四节「数据资源盘点与规划」… 给大家留个悬念,就不为大家透露更多的细节了。

        读后感:

        数据中台(CDP)在互联网企业中已经有了多年的实践,但是对于传统的企业来说还是一个比较新的话题。数据中台是实现企业全面数据化的一个解决方案,是一套支撑企业全面数据化的架构,会成为企业开展全面数据化的基础设施。这本书呢,对于企业建设数据化建设的目标,内容以及定位做了相对完整的论述,详细地阐述了数据中台的定义,内容及如何支撑企业数据化整理建设,同时也介绍了数据中台在企业中的落地步骤,丰富的数据应用场景与实际效果。但是这本书关于实践方面的内容非常少,有相当一部分是套话和泛泛而谈的理论,用豆瓣一位网友的话来说,就是比较适合非技术出身的PM速读,能迅速地对数据中台的一些理念有个大概了解,在面向客户侧领导层的时候,可以开展初步的项目意向沟通

小结

        一本好书的美,应该等到自己亲自去品尝,不然旁人所说再多都是无益的。本篇文章我只分享介绍了3本最近在看的技术书,还有一些不是技术书的我就没有分享了,例如东野圭吾的2020大成之作《沉默的巡游》,还有中国全脑培训金牌讲师石伟华老师的《记忆宫殿》都是非常不错的…以后找个机会单独写一期非技术书籍的分享,好像还不错!那本篇文章就到这里就Over了,喜欢笔者分享的可以点个在看,加个关注~你知道的越多,你不知道的也越多,我是Alice,我们下一期见!

大数据梦想家 CSDN认证博客专家 CSDN博客专家 大数据学者 追梦人
专注与研究大数据基础,理论,架构与原型实现。
个人原创公众号「 大数据梦想家 」,每日更新大数据干货,欢迎上车!
一天的生活就是一生的缩影。在最美的年华,做最好的自己!!!
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页