python爬取并分析淘宝商品信息

前言

        相信说起“淘宝” ,大家都不会感到陌生吧。作为中国最大的电商平台,淘宝仿佛已经与我们的生活紧密相连。正好之前在CSDN上看到@不正经的kimol君 写了一篇利用《python爬取并分析淘宝商品信息》的文章,于是仔细拜读了一下,感觉贴近生活,且十分实用,故写下这篇文章,记录一下。

在这里插入图片描述


1、模拟登陆

兴致勃勃的我,冲进淘宝就准备一顿乱搜:
在这里插入图片描述
在搜索栏里填好关键词:“显卡”,小手轻快敲击着回车键(小样~看我的)

心情愉悦的我等待着返回满满的商品信息,结果苦苦的等待换了的却是302,于是我意外地来到了登陆界面。
在这里插入图片描述
情况基本就是这么个情况了…

然后我查了一下,随着淘宝反爬手段的不断加强,很多小伙伴应该已经发现,淘宝搜索功能是需要用户登陆的!

关于淘宝模拟登陆,已经有大佬已经利用requests成功模拟登陆(大家可以去CSDN上看@猪哥66的《Python模拟登录淘宝》)

这个方法得先分析淘宝登陆的各种请求,并模拟生成相应的参数,相对来说有一定的难度。
在这里插入图片描述
于是我决定换一种思路,通过 selenium+二维码 的方式:

#   打开图片
def Openimg(img_location):
    img=Image.open(img_location)
    img.show()

#   登陆获取cookies
def Login():  
    driver = webdriver.PhantomJS() 
    driver.get('https://login.taobao.com/member/login.jhtml')
    try:
        #driver.find_element_by_id("J_Static2Quick").click()   #切换成二维码模式
        driver.find_element_by_xpath('//*[@id="login"]/div[1]/i').click()
    except:
        pass
    time.sleep(3)
    #code_element = driver.find_element_by_xpath('//*[@id="J_QRCodeImg"]/img')
    #code_url = code_element.get_attribute('src')
    # 执行JS获得canvas的二维码
    JS = 'return document.getElementsByTagName("canvas")[0].toDataURL("image/png");'
    im_info = driver.execute_script(JS) # 执行JS获取图片信息
    im_base64 = im_info.split(',')[1]  #拿到base64编码的图片信息
    im_bytes = base64.b64decode(im_base64)  #转为bytes类型
    time.sleep(2)
    with open('./login.png','wb') as f:
        f.write(im_bytes)
        f.close()
    t = threading.Thread(target=Openimg,args=('./login.png',))
    t.start()
    print("Logining...Please sweep the code!\n")
    while(True):
        c = driver.get_cookies()
        if len(c) > 20:   #登陆成功获取到cookies
            cookies = {}
            for i in range(len(c)):
                cookies[c[i]['name']] = c[i]['value']
            driver.close()
            print("Login in successfully!\n")
            return cookies
        time.sleep(1)

通过webdriver打开淘宝登陆界面,把二维码下载到本地并打开等待用户扫码(相应的元素大家通过浏览器的F12元素分析很容易就能找出)。待扫码成功后,将webdriver里的cookies转为DICT形式,并返回。(这里是为了后续requests爬取信息的时候使用)

        

2、爬取商品信息

当我拿到cookies之后,便能对商品信息进行爬取了。

        
在这里插入图片描述

2.1 定义相关参数

定义相应的请求地址,请求头等等,用于模拟浏览器进行访问:

# 定义参数
headers = {'Host':'s.taobao.com',
           'User-Agent':'Mozilla/5.0 (Windows NT 6.3; Win64; x64; rv:63.0) Gecko/20100101 Firefox/63.0',
           'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
           'Accept-Language':'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2',
           'Accept-Encoding':'gzip, deflate, br',
           'Connection':'keep-alive'}
list_url = 'http://s.taobao.com/search?q=%(key)s&ie=utf8&s=%(page)d'

2.2 分析并定义正则

当请求得到HTML页面后,想要得到我们想要的数据就必须得对其进行提取,这里我选择了正则的方式。通过查看页面源码:
在这里插入图片描述
偷懒的我上面只标志了两个数据,不过其他也是类似的,于是得到以下正则:

# 正则模式
p_title = '"raw_title":"(.*?)"'       #标题
p_location = '"item_loc":"(.*?)"'    #销售地
p_sale = '"view_sales":"(.*?)人付款"' #销售量
p_comment = '"comment_count":"(.*?)"'#评论数
p_price = '"view_price":"(.*?)"'     #销售价格
p_nid = '"nid":"(.*?)"'              #商品唯一ID
p_img = '"pic_url":"(.*?)"'          #图片URL

聪明的小伙伴应该肯定已经发现了,其实商品信息是被保存在了g_page_config变量里面,所以我们也可以先提取这个变量(一个字典),然后再读取数据,也可!

2.3 数据爬取

完事具备,只欠东风。于是,东风来了:

# 数据爬取
key = input('请输入关键字:') # 商品的关键词
N = 20 # 爬取的页数 
data = []
cookies = Login()
for i in range(N):
    try:
        page = i*44
        url = list_url%{'key':key,'page':page}
        res = requests.get(url,headers=headers,cookies=cookies)
        html = res.text
        title = re.findall(p_title,html)
        location = re.findall(p_location,html)
        sale = re.findall(p_sale,html)
        comment = re.findall(p_comment,html)
        price = re.findall(p_price,html)
        nid = re.findall(p_nid,html)
        img = re.findall(p_img,html)
        for j in range(len(title)):
            data.append([title[j],location[j],sale[j],comment[j],price[j],nid[j],img[j]])
        print('-------Page%s complete!--------\n\n'%(i+1))
        time.sleep(3)
    except:
        pass
data = pd.DataFrame(data,columns=['title','location','sale','comment','price','nid','img'])
data.to_csv('%s.csv'%key,encoding='utf-8',index=False)

上面代码爬取20页商品信息,并将其保存在本地的csv文件中,效果是这样的:
在这里插入图片描述

3、简单数据分析

现在数据有了,放着岂不浪费,我可是社会主义好青年,怎么能做这种事?那么,就让我们来简单看看这些数据:(当然,数据量小,仅供娱乐参考)

3.1 导入库

import jieba
import operator
import pandas as pd
from wordcloud import WordCloud
from matplotlib import pyplot as plt

以上相应库的安装,基本都能通过pip解决,这里就不介绍了

3.2 中文显示

# matplotlib中文显示
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']

不设置可能出现中文乱码等闹心的情况哦~

3.3 读取数据

这一步我们读取之前我们收集的显卡.csv文件

# 读取数据
key = '显卡'
data = pd.read_csv('%s.csv'%key,encoding='utf-8',engine='python')

3.4 分析价格分布

# 价格分布
plt.figure(figsize=(16,9))
plt.hist(data['price'],bins=20,alpha=0.6)
plt.title('价格频率分布直方图')
plt.xlabel('价格')
plt.ylabel('频数')
plt.savefig('价格分布.png')

价格频率分布直方图:
在这里插入图片描述

3.5 分析销售地分布

# 销售地分布
group_data = list(data.groupby('location'))
loc_num = {}
for i in range(len(group_data)):
    loc_num[group_data[i][0]] = len(group_data[i][1])
plt.figure(figsize=(19,9))
plt.title('销售地')
plt.scatter(list(loc_num.keys())[:20],list(loc_num.values())[:20],color='r')
plt.plot(list(loc_num.keys())[:20],list(loc_num.values())[:20])
plt.savefig('销售地.png')
sorted_loc_num = sorted(loc_num.items(), key=operator.itemgetter(1),reverse=True)#排序
loc_num_10 = sorted_loc_num[:10]  #取前10
loc_10 = []
num_10 = []
for i in range(10):
    loc_10.append(loc_num_10[i][0])
    num_10.append(loc_num_10[i][1])
plt.figure(figsize=(16,9))
plt.title('销售地TOP10')
plt.bar(loc_10,num_10,facecolor = 'lightskyblue',edgecolor = 'white')
plt.savefig('销售地TOP10.png')

销售地分布:
在这里插入图片描述
销售地TOP10:
在这里插入图片描述

3.6 词云分析

        有了之前的 显卡.csv 数据,我们也可以对商品标题 title做一个词频展示:

# 制作词云
content = ''
for i in range(len(data)):
    content += data['title'][i]
wl = jieba.cut(content,cut_all=True)
wl_space_split = ' '.join(wl)
wc = WordCloud('simhei.ttf',
               background_color='white', # 背景颜色
               width=1000,
               height=600,).generate(wl_space_split)
wc.to_file('%s.png'%key)

下面展示的是淘宝商品”显卡“的词云:
在这里插入图片描述
最后感谢各位大大的耐心阅读~

小结

        本篇内容主要为大家介绍了下通过python去爬取并分析淘宝商品数据的步骤,并穿插一些细节的讲解,但由于篇幅问题,更多细化的知识点并没有详细展开介绍。需要完整项目源码的同学,可以关注下方公众号,回复“python淘宝爬虫”即可获取。

在这里插入图片描述

大数据梦想家 CSDN认证博客专家 CSDN博客专家 大数据学者 追梦人
专注与研究大数据基础,理论,架构与原型实现。
个人原创公众号「 大数据梦想家 」,每日更新大数据干货,欢迎上车!
一天的生活就是一生的缩影。在最美的年华,做最好的自己!!!
相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页